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Some inequalities proved by Meinardus and Varga, and by Erdos and Reddy,
on Chebyshev constants for the function 1If, f entire and satisfying some condi
tions, have been improved or extended to functions satisfying a different set
of conditions.

1. INTRODUCTION

Let fez) be a transcendental entire function with f<k)(O) ;?: 0 for all k, and
let

\ . f I 1 1 III = In sup -- - --
O.n PE7T

n
o<x<oo f(x) p(x)

(I.I )

denote the Chebyshev approximation constant for I/f Here 1Tn denotes the
collection of all real polynomials of degree at most n.

Forfofperfectly regular growth, Meinardus and Varga [7] have proved

THEOREM A. Let fez) = L:~o akzk be any entire function of perfectly
regular growth (p, B) with ak ;?: 0 for all k ;?: 0, and for any nonnegative
integers m and n let

\*. I 1 p(x) I
II m•n = Inf sup f() - -(_)

PE7Tm o<x<oo X q X
qE1Tn

denote the Chebyshev constants for I/f Then for any sequence {m(n)};:;'~o with
o~ men) ~ nfor each n ;?: 0,

(1.2)
n---+':.O

Moreover,

(1.3)
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In Theorems 1 and 2 of this paper we obtain inequalities for Ao.n , for a
class of entire functions f of infinite order. In Theorem 3 and Corollary 3.1,
we consider f of any order and obtain inequalities, valid for all n ): 1, when
](z) = L::~o akzk and the coefficients ak satisfy some regularity conditions.
In Corollary 3.2 we require thatfbe of "smooth growth." Corollary 3.3 and
Theorem 4 extend Theorem A.

For some inequalities giving upper bounds to lim infn~CX) A~;~ see [13] and
the references given there.

In the sequel, r > ro (or n > no or x > xo) will mean that r (resp. n, x) is
sufficiently large. The value ro (or no , xo) will in general vary. A, AI' A2 , B,
a, [3, C, CI will denote positive numbers; and ek and lk will denote the kth
iteration of the exponential function, and logarithmic function so that
el(x) = eX, lix = log x [3, p. 16].

2. INEQUALITIES FOR Ao•n

The required functionfin Theorem 1 will depend on a given function F of
order one maximal type.

THEOREM 1. Let F(z) be an entire function oforder one, maximal type, and
ofperfectly regular growth with respect to a proximate order, that is,

lim log M(r, F)/rp(r> = 1,,->CX)

Write

Suppose now that

lim !fi(r) rL(r)
'->00 L(er) = 00,

lim per) = 1.,-> 00

Jr dt
!fi(r) = ro tL(t), (2.2)

(2.3)

and that there exists an entire function 7J with nonnegative coefficients such that
for all r > ro ,

for some pair (A, B) ofpositive numbers. Then for fez) = e2(7J(z»

Ao.n ): exp(-n/(L(n»1/2)

for an infinity ofn.

(2.4)

(2.5)
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COROLLARY 1.1. Let K be a fixed integer and 2 k K. Assume the
hypotheses oj Theorem I and suppose Jurther that

<fi(r) rL(r) ;c L(er) <fi(er), r > ro . (2.6)

Then Jor each Junction Jk(Z) 1(z) = ek(1)(z» (2 :(; k :(; K)

An.n ? exp( -nj(L(n»1/2)

Jor an infinity ojn.

Remarks. (i) Condition (2.3) assures that <fi(r) is a strictly increasing
unbounded function of r for r > ro . Hence the inverse function <fi-l(r) exists
on (ro , CX).

(ii) Condition (2.4) permits us to construct many functionsJfor which
the conclusion (2.5) holds. For instance, we can take fez) = el1)(z) -+- g(z»,
where g(z) is any entire function, with nonnegative coefficients, such that
fer) = o(1)'(r».

EXAMPLE 1.2. Let F be an entire function such that

p>1.

Take L(r) = Ilr ... Ipr, r > ep(I). Then <fi(r) = Ip+lr, by choosing ro in (2.2)
suitably. Condition (2.6) is satisfied. Take '1](z) = ep+l(z). Then '1]'(r)
ep+l(r) ever) ." el(r), <fi-l(r) = ep+1(r), L(<fi-l(r» = ep(r) ... el(r) and so (2.4) is
satisfied. Now we choose 1(z) c= ek+p+l(Z) (2 .~ k :(; K) and get

for an infinity of n.
In the next theorem we use the properties of Iogarithmico-exponential

functions [3, p. 17].

THEOREM 2. Let L(x) be positive and continuous Jor x Xn and suppose
that

J
x dt

<fi(x) = "'0 tL(t) (2.7)

is an unbounded logarithmico-exponential Junction. Then there exists an
entire Junction J oj infinite order such that

Jor an infinity oj n.
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These two theorems extend and improve the corrected version of [2,
Theorem 2]. (For the corrections, see Errata to [2].)

The next theorem gives an inequality for "o.n valid for n > 1. Here f may
be of any order, finite or infinite.

THEOREM 3. Let f be an entire function defined by

fez) = L akZ",

h'~O

(2.8)

Let {dd~~l be any strictly increasing unbounded sequence ofpositive numbers.
Then for n> 1

(2.9)

In the following Corollary 3.1 we make a suitable choice for dn and in
Corollary 3.2 we put conditions on the asymptotic behavior off

COROLLARY 3.1. Let f be defined by (2.8). Suppose further that ak =f °
and write dk = ak-l/ak (k > I). Assume also that

k> I,

p = [kc], k > no ,

(2.10)

(2.11 )

for some number c in (0, I). Then for all n > 1,

" _> A d1 ••• dn
0.2n-1 ,;/ n224n d ... d '

n+! 2n

where A is a positive constant which may depend on ao and c.

(2.12)

COROLLARY 3.2. Let f be defined by (2.8). Suppose that ak c;tc 0 and assume
that dk+l > dk = ak-l/ak (k > I). Suppose further the following (see [6]):

There exists a positive function rp defined for all positil'e numbers such that;

rp' is positive and unbounded,
rp" is positil'e and continuous,

and for all large x

ex rp'(x) < rp"(x) < f3 rp'(x)
rp(x) rp'(x) rp(x) •
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for some pair «x, f3) ofpositive numbers, and

log M(r,.f) "" <p(log r).

Then (2.12) holds. The constant A may now depend on a o , (x, and fJ.

COROLLARY 3.3 Let f be defined by (2.8). Let mil' No be the smallest
positive integers such that mil < No and ak :> 0 (k mo),

(k :> No).

Let 0 < p < 00 and suppose that f is ofperfectly regular growth H'ith respect
to a proximate order per), that is,

Then

hm log M(r,.f) = 1
r-LY.J rfJ(r) ,

lim per) = p.
r~OO

lim inf ;"1/n )0 1/22+1 /0.
n--HXJ O,n

This corollary improves (1.3). Note that we have assumed here a some
what different hypothesis than that of Theorem A. In the next theorem we
assume that ak satisfies an asymptotic relation, and extend (1.2) and (1.3) to
functions fwhich may not be of perfectly regular growth (p, a).

THEOREM 4. Let

k --+ 00, 0 < p < 00, (2.13)

where L(x) is any real valued function positive on [110 , 00) and {x 10g(xL(x))}
strictly convex. Suppose further that limx~oo xL'(x)/L(x) = O. Let f be defined
by (2.8) and (2.13). Then f is an entire function of perfectly regular growth
with respect to a proximate order per), limr~x per) = p and

lim sup /.,l/n <: 1/21 / 0

n~oc, O.n~' ,

lim inf /..l/n )0 1/22+1/0.
n-HX O,n

(2,14)

(2.15)

Remarks. (i) Erdos and Reddy have proved ([2, Theorem 4]; see also
Errata to [2]), that iff is an entire function of finite order p, defined by

(2.16)
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then for € > 0 and all n > no(€),

151

(2.17)

We do not restrict, in Theorem 3 or Corollaries 3.1 and 3.2, f to be of
finite order. Iff is of finite order p and lower order A. then [11]

lim sup log n =!p.
n->oc inf log dn A. ' (2.18)

and (2.18) shows that (2.12) gives a better inequality than (2.17) for the class
of functions f, considered in Corollaries 3.1 and 3.2 and of order p.

(ii) The functions f, in Corollary 3.2, form a subset of the class of
functions G defined by London [6]. This class includes all functions of finite
nonzero order and of perfectly regular growth with respect to a proximate
order, and also many functions of zero and infinite order. G includes, for
instance, all functions f such that

log M(r,!) roo.,; cek(cllog r), k~1.

EXAMPLE 4.1. Let p> 1, (Xl , ••• , (Xp real numbers. Choose X o > 0 so
large that for x ~ X o , lp(xo) > 0 and

Let

L(x) = (lIXt l
••• (lpxtp,

L(x) = L(xo), x <xo.
(2.19)

Then L(x) satisfies the hypotheses of Theorem 4. Let f be defined by (2.8),
(2.13), and (2.19). Then (2.14) and (2.15) hold. In particular, for the two
functions

and

we have

fez) = 1 + f (log k t Zk

k=2 k

fez) = 1 + ~2 (k l:g k) k ,

(2.20)

(2.21)

lim sup A.~:~ :::;; i;
n->oo
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These results improve [2, Examples 1 and 2, pp. 448-449]. Note also that f
defined by (2.8), (2.13), and (2.19) (or f defined by (2.20) or (2.21») is not of
perfectly regular growth (p, a) if at least one exj 0/= 0 [3, p. 53].

3. PROOF OF THEOREM 1

By the properties of proximate orders, L(r), and consequently 1/;(r), are
slowly changing functions [5, 10]. Further, (2.3) shows that rj;(r) ---+ Cf) as
r ---+ Cf) (cf. [4, pp. 296-297]). (It is not necessary to assume that L(r) is an
increasing function of r.) Hence the inverse function 1/;-I(r) exists and is
increasing for r > ro , and is unbounded. Further, L(r) ---+ Cf) by hypothesis
and so 1/;-I(r) L(1/;~I(r») ---+ Cf) with r.

Let TJ be an entire function with TJ(k)(O) ;::?; 0 for all k and let

(3.1)

Let p E 'Trn and be such that

Suppose if possible

for all n > no . Let c = t, n > no and choose r1 such that

TJ(r1) = /1 (L(~;)lj2) .

From (3.2) and (3.3) we have

IP(~I) I;::?; exp (L0~;j2) - exp (L0)~lj2)

(3.2)

(3.3)

1 (-en)> 2" exp (L(n»lj2 , n > no' (3.4)

Let r2 = rl(l + 8/2), where 8 = e2/2L(n). Then by an inequality from
Remes [9], we have for n > no ,

1 (2nC)I p(r2) I ~ 2 exp (L(n»lj2 . (3.5)
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(3.6)

7](r2) > 7](r1) + (r2 - r1) 7]'(r1)

= /1 ((L(~)1/2) + '~~ Aifr1(r1) L(ifl-l(r1»· (3.7)

By (2.4) we have for r > ro ,

(AI2) ifl-l(r) < 7](r) < 2Bifl-l(r).

Hence

Since L is a slowly changing function and

we have for n > no, ifl((log n)/3B) < r1 ; and

(
en ) ifl(logn)Ae2 1 (en) ( en)

7]('2) > /1 (L(n»1/2 + 32B L(n) 11 (L(n»1/2 L 11 (L(n»1/2 '

and by (2.3) the last term on the right tends to ctJ with n. Hence for n > no we
have (3.6); that is,

I 1 1 I I I ( - 2en )
O;~~r2 f(x) - p(x) >"2 Ip(rJl > exp (L(n»1/2 .

This leads to a contradiction with our assumption (3.2), since e = t. The
theorem is proved.

Proof of Corollary I.I. The proof is similar to that of Theorem 1. We
take fez) = ek(7](z», where 2 ~ k ~ K; 7](rl) = lk_1(en/L(n»1/2), '2 = r1
(l + 812),8 = e2/2L(n). For n > no
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Now for the last term t (say) we have

since 1, Ik_1 , and L are all slowly changing functions. Hence for k > 2 (for
the case k = 2, see Theorem I),

I > ~~) L (lk_2 (L(~~)1/2) 1 (lk-2 (L(~~)1/2)

> L~~) L(lk-2n) 1(lk-2n)

> A L(n) 1(n)
I (lIn) '" (lk-2n) L(n)

Since

( 2en) (en) -IIk_1 (L(n»lj2 - l'e-! (L(n»1/2 = (1 + o(1»(log 2)(lln ···l,.-2n) ,

and 1(n) -+ 00 we have for all n > no

and the rest of the proof is as in the theorem.

4. PROOF OF THEOREM 2

Since

I
r dt

f(r)= rolL(t)

is a 10garithmico-exponential function and increases to 00, there exists an
integer K such that 1(x)jIKx tends to 00 with x [3, p. 21]. Further L(r) is also
a logarithmico-exponential function [3, pp. 18-19]. We may suppose K> 6.
Let k = K - 3 and f(z) = ek+3(z). Since Ilnl2n '" Ik+2(n)jL(n) -+ 00 as
n -+ 00 [3, pp. 33-34] the argument given in Theorem 1 completes the
proof.
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5. PROOF OF THEOREM 3

Let p E 7Tn be a polynomial such that

I I 1 I,\ = sup -- - --
o.n O<x<ro f(x) p(x)
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Suppose first that I/,\o.n > f(dn) (n ~ 1). Then sincefis increasing on [0, (0)
we have for 0 ~ x ~ dn

(5.1)

Now write

En(f) = inf II f - g 11[0 d ] •
YE'Tr

n
' " 'n

Then

En(f) ~ Ilf - p II[o.d] ~ {f(dn)p/l-f- - f(dn)l· (5;2)
O.n

By an inequality of Bernstein [I, p. 10]

(5.3)

From (5.2) and (5.3) we get, for n ~ I,

(5.4)

If I/,\o.n ~f(dn) then sincef(dn) ~ an+ld~+l, (5.4) certainly holds. The proof
is complete.

Proof of Corollary 3.1. By the argument of Theorem 3, we have

(5.5)

Now, fez) can be written as

ce 0:.. k

fez) = ao + I akzk = ao + ao I d ~. d .
k~l k~l 1 k

Let {-L(r, f) denote the maximum term and vCr, f) its rank. Then for r > ro [12]

M(r,f) < A1{-L(r,f) v(r,j)
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and we can choose Al such that this inequality holds for all r dl . This gives

fed,,) < aOA 1nd,,"j(dl ••• d,,) (5.6)

and (2.12) follows from (2.9), (5.5), and (5.6), on writing A = IjaoA l 2.

Proof of Corollary 3.2. We have for r > ro [6, p. 498]

M(r,j) < A2ft(r,j) v(r,j)

and now the argument is similar to that in Corollary 3.1.

Proof of Corollary 3.3. By Theorem 3, we get for n ;;;: I,

Here {D,,};:' is any strictly increasing sequence, D1 > O. Now we can write

00 Zk

fez) = ao+ L d d··· d '
k~rno 12k

where dk +! > dk for k > No. Choose no (>No) so large that for n ;;;: no,

Take D" = d" , n ;;;: no, and 0 < D1 < D2 < ... D(no) < .... Then, for
n > no

\.2"-1 ;;;: exp{log a2" + 2n log d" - 4n log 2 - 210gf(d,,)}.

Now [8, p. 9] log M(r) .-.." log ft(r) .-.." rP(T), and vCr) .-.." prPL(r) (cf. [3, p. 38]).
Hence n = (1 + 0(1)) d"PL(d,,). Further (p(r) - p) log r = log L(r), rp'(r)
log r = 0(1). Hence

I L(d2") (I d2" )
og L(d,,) = 0 og d:: '

d 1
log ;r = - (log 2 + 0(1)).

" p
Consequently,

l d2" I"\0.2,,-1;;;: exp log d
1
d

2
~ .. d

2
" - 210gf(d,,) - 4n log 2

= exp Id~L(d2") - ~ (log 2) - 2d"PL(d,,) - 4n log 2 + o(n)l

l 2n log 2 l
= exp -4n log 2 - + o(n) .

. p

Since -'0.2,,-2 ;;;: "\0.2"-1 , the corollary follows.
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6. PROOF OF THEOREM 4

(i) We compare the growth of

00

fez) = I akzk
k~O

with the growth of

157

00 I klo 00

F(z) = ao(F) + k~~+l (kL(k») Zk == t:o ak(F) Zk, ao(F) >0. (6.1)
o

By hypothesis on ak we have for r > ro

M(r, F)
2 < M(r,1) < 2M(r, F). (6.2)

Further F, and so f, are of perfectly regular growth with respect to a
proximate order per) defined as follows [14, pp. 209-211]. Let x> no and

w(x) = {log(xL(x»}/(p log(xle) - p log p).

Then

lim w(x) = lip,
x-+oo

lim w'(x) x log x = o.
x-+oo

Let per) = llw(y), where r = {yw(y)}Whl). Then per) is a proximate order,
limT -+ oo per) = p and

lim log M(r, F) = lim log M(r,1) = l.
r-+oo rO(T) r-+oo rO(T)

(ii) We now prove (2.15). Choose

n > no.

Then by convexity hypothesis

Also for n > no, dn ;? dp(nl(n - l», p = [nI2]. Hence [12] F(dn) < An
an(F) dnn. Consequently we have by (5.5), for n > no,

'\~:~~~11) ;? exp 12n ~ 1 (log a2n + 2n log dn

- 4n log 2 - 210gf(dn»l. (6.3)
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2n log dn - 2 iogf(d,,) 2/1 log d" --- 2 log an(F)-- 2/1 log dn +- o(n),

Hence

lim inf ,,-1/(2,,--1) ): exp \-210g 2 - }-Iog 21,
n~aJ 0,2n 1 I p

and (2.15) is easily proved.

(iii) To prove (2.14), we note that

Now let n > no. Using convexity hypothesis we have

aJ T I' kip

k~~+l ak
xk

< 2 k~~-L1 (TL(k)) x

k

. I (1/+1) /p

< 2vnt1 ( ) (I -.L T -i- T2 -i- ... )
A (/1 _~ I) L(n +- I) I ]. 1 I

= 2x'h] ( I )(1/-'1)/"

1 - T] (/1 -.L l) L(n + l) . '

where

x«n +- I) L(n +- I ))(nl1) 10

T] = «(/1 +- 2) L(n + 2))(n+2)lo

x
x(n) < I.

Suppose now n is odd, n == 2N - I. Then {sn(x)? ): aN
2x 2N and so

I 1 2 1
Sn(X) - f(x) < aN2{2NL(2N)}(2Nlo) 1 - T1 .

Choose x :0;:: x(n)(1 - on), where On = exp( -n/log n). Then

I I
1 - T :0;::8'1 n

I 1 \ 2N 2N I
-(-) - f( ) < exp /o(n) + -log(NL(N)) - -- (Iog(2N) + log L(2N))\
Sn x x . p p

!-2N I= exp -- log 2 + o(N)\ .
p .

(6.4)
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Now if x > X(n)(l- On), then

0<_1 1_ <_1_
"" Sn(x) f(x) "" aNxN

159

= exp 1;-log(NL(N)) + 0(1) - N log X(2N -- I) - Nlog(l - 02N-t)!

= exp I-pN (1 + log 2) + O(N)l. (6.5)

Hence for all large N, the expression in (6.5) is less than (6.4). Consequently,

] . \l!2N-t (-I] 2)1m sup 1I0 .2N-l :(: exp ~- og .
N~ro p

Also ,1.O,2N :(: ,1.O,2N-l • Hence from (6.4)

lim sup ,1.~::~ :(: exp (=! log 2)
N~ro p

and the theorem is proved.
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