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Some inequalities proved by Meinardus and Varga, and by Erdos and Reddy,
on Chebyshev constants for the function 1/f, fentire and satisfying some condi-
tions, have been improved or extended to functions satisfying a different set
of conditions.

1. INTRODUCTION

Let f(2) be a transcendental entire function with f*®(0) >> 0 for all k, and
let

Ag.n = Inf sup ! (1.0

l
pen, 0<x<w fx) p(x)
denote the Chebyshev approximation constant for 1/f. Here =, denotes the

collection of all real polynomials of degree at most ».
For fof perfectly regular growth, Meinardus and Varga [7] have proved

THEOREM A. Let f(2) = Yr o @12* be any entire function of perfectly
regular growth (p, B) with a, >0 for all k =0, and for any nomnegative

integers m and n let
: ] px)
AR, = inf su e e T2
" e 02x2e L) 4()
qem,
denote the Chebyshev constants for 1/f. Then for any sequence {m(n)}s_, with
0 < m(n) < nforeachn =0,

lim sup Ky )1/ < 1[211, (1.2)
Moreover,
lim sup (A )Y = 1/274/7, (1.3)
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In Theorems 1 and 2 of this paper we obtain inequalities for A, ,, for a
class of entire functions f of infinite order. In Theorem 3 and Corollary 3.1,
we consider f of any order and obtain inequalities, valid for all n > 1, when
f(2) = iy axz* and the coefficients a, satisfy some regularity conditions.
In Corollary 3.2 we require that f'be of “smooth growth.” Corollary 3.3 and
Theorem 4 extend Theorem A.

For some inequalities giving upper bounds to lim inf, ., Ag/n see [13] and
the references given there.

In the sequel, r > ry (or n > n, or x > x,) will mean that r (resp. n, x) is
sufficiently large. The value r, (or ny , x;) will in general vary. 4, 4, , 4,, B,
a, B3, ¢, ¢, will denote positive numbers; and e, and /, will denote the kth
iteration of the exponential function, and logarithmic function so that
e(x) = e*, LL1x = log x [3, p. 16].

2. INEQUALITIES FOR A, ,

The required function fin Theorem 1 will depend on a given function F of
order one maximal type.

THEOREM 1. Let F(z) be an entire function of order one, maximal type, and
of perfectly regular growth with respect to a proximate order, that is,

lim log M(r, F)/r"” =1, lim p(r) = 1.

Write

=ro 0= [ e

Suppose now that

i JOILO)

row L(e') B ’ (23)

and that there exists an entire function n with nonnegative coefficients such that
Sorallr > ry,

AU r) L) < 7'(r) < Byp(r) L)) (2.4
Sfor some pair (A, B) of positive numbers. Then for f(z) = ey(n(2))
Ao.n = exp(—n{(L(n))*/?) 2.5

Jor an infinity of n.
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CoOROLLARY 1.1. Let K be a fixed integer and 2 <L k < K. Assume the
hypotheses of Theorem | and suppose further that

Py rl(r) = L(e™) (e, P, (2.6)
Then for each function fi(z) = f(z) = e{n(2)) @ < k < K)

Ao.n = exp(—nf(L(n))'/?)
Jor an infinity of n.

Remarks. (i) Condition (2.3) assures that (r) is a strictly increasing
unbounded function of r for r > r, . Hence the inverse function —(r) exists
on (ry , o).

(it) Condition (2.4) permits us to construct many functions f for which
the conclusion (2.5) holds. For instance, we can take f(z) = e,(n(2) + &2)),
where £(z) is any entire function, with nonnegative coefficients, such that

§'(r) = o(y'(r)-
ExampLE 1.2. Let F be an entire function such that
log M(r, F) ~ rlriyr -+ Ly, p> L

Take L(r) = Lir -+ Ir, r > e,(1). Then (r) == I,.4r, by choosing r, in (2.2)
suitably. Condition (2.6) is satisfied. Take %(z) = e,.4(z). Then 7'(¢) =
epa(r) ey(r) - ex(r), y7Hr) = €,.(r), L(IH(r)) = e, (r) -+~ ex(r) and s0 (2.4) is
satisfied. Now we choose f(2) = e€pyp.1(2) 2 < k < K) and get

- —n o
Aa.n = exP ({lln L)

for an infinity of n.
In the next theorem we use the properties of logarithmico-exponential
functions [3, p. 17].

THEOREM 2. Let L(x) be positive and continuous for x = X, and suppose

that y
P(x) = a ?ZIIT) (2.7

is an unbounded logarithmico-exponential function. Then there exists an
entire function f of infinite order such that

Ag,n = €XP (mj)—)’z/—z)

for an infinity of n.
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These two theorems extend and improve the corrected version of [2,
Theorem 2]. (For the corrections, see Errata to [2].)

The next theorem gives an inequality for A, , valid for n > 1. Here f may
be of any order, finite or infinite.

THEOREM 3. Let f be an entire function defined by
f(@) = Z az*, ay>0,a, > 0. (2.8)
k=0

Let {d,)7_, be any strictly increasing unbounded sequence of positive numbers.
Then for n > 1

Aon 2= (@ adn (27T (d}®). (2:9)

In the following Corollary 3.1 we make a suitable choice for 4, and in
Corollary 3.2 we put conditions on the asymptotic behavior of f.

COROLLARY 3.1. Let f be defined by (2.8). Suppose further that a, + 0
and write d,, = a,_,/a, (k = 1). Assume also that

devy > dy k=1, (2.10)

k
d> (=) dos P = kel k > ny, 2.11)

for some number ¢ in (0, 1). Then for all n > 1,

N . A d, - d,

0,2n-1 = n224n dn+1 . dzn B

(2.12)

where A is a positive constant which may depend on a, and c.

COROLLARY 3.2. Let f be defined by (2.8). Suppose that a, -+ 0 and assume
that di,q > d,, = ap_q/ay (k = 1). Suppose further the following (see [6]):

There exists a positive function ¢ defined for all positive numbers such that;

¢ is positive and unbounded,
¢" is positive and continuous,

and for all large x

D)
P(x)

- ?"(x) <8 ¥'(x)

P'(x) P(x)
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for some pair (&, B) of positive numbers, and
log M(r, f) ~ ¢(log r).

Then (2.12) holds. The constant A may now depend on a, , «, and f5.

COROLLARY 3.3 Let f be defined by (2.8). Let my, Ny be the smallest
positive integers such that my < Ny and a, > 0 (k = my),

A 1/a < Al 4q (k > Ny).

Let O << p << oo and suppose that f is of perfectly regular growth with respect
to a proximate order p(r), that is,

. log M(r, .
lrlsrg—gFDTT(")_ﬁ:13 lan;p(r):p

Then

li]}llnf Al = 1/2%+ e,

This corollary improves (1.3). Note that we have assumed here a some-
what different hypothesis than that of Theorem A. In the next theorem we
assume that a, satisfies an asymptotic relation, and extend (1.2) and (1.3) to
functions £ which may not be of perfectly regular growth (p, a).

THEOREM 4. Let
a, ~ (1/kL(k))*ie, k— 00,0 << p < 00, (2.13)
where L(x) is any real valued function positive on [n, , ) and {x log(xL(x))}
strictly convex. Suppose further that lim, ., xL'(x)/L(x) = 0. Let f be defined

by (2.8) and (2.13). Then f is an entire function of perfectly regular growth
with respect to a proximate order p(r), lim,_. p(r) = p and

]irglqgup Ap/m <1200, (2.14)
lim inf AY/% > 1/2241/2, (2.15)

Remarks. (i) Erdds and Reddy have proved ({2, Theorem 4]; see also
Errata to [2]), that if fis an entire function of finite order p, defined by

k

i z
=1+ _ loiq > dy >0, 2.16
f(Z) Igl dldg . dk yiq k ( )
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then for € > 0 and all # > ny(e),

Xogn-g = (dy -+ d )22, dyy s - do). (2.17)

We do not restrict, in Theorem 3 or Corollaries 3.1 and 3.2, f to be of
finite order. If fis of finite order p and lower order A then [11]

sup logn _ (p
A% inf logd, A’ (2.18)
and (2.18) shows that (2.12) gives a better inequality than (2.17) for the class
of functions f, considered in Corollaries 3.1 and 3.2 and of order p.

(ii)) The functions f, in Corollary 3.2, form a subset of the class of
functions G defined by London [6]. This class includes all functions of finite
nonzero order and of perfectly regular growth with respect to a proximate
order, and also many functions of zero and infinite order. G includes, for
instance, all functions f such that

log M(r, f) ~ ce(c, logr), k>1

ExAMpPLE 4.1, Let p > 1, o ,..., @, real numbers. Choose x, >0 so
large that for x = x,, /,(x,) > 0 and

;g; {x log(x(Lx)™ --- (I,x)™)} > 0.
Let
L(x) = (I,x)™ -+ (I, %)%, X 2= X
(2.19)
L(X) = L(x())a x < Xp.

Then L(x) satisfies the hypotheses of Theorem 4. Let f be defined by (2.8),

(2.13), and (2.19). Then (2.14) and (2.15) hold. In particular, for the two
functions

' e/ logk
f@) =1+ Z( o8 ) k (2.20)
k=2
and
z)=1+ =) > 2.21
K ,22 (k log k) (2.21)
we have
limsup M7 <4: liminf A>3

640/24/2-5
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These results improve {2, Examples 1 and 2, pp. 448-449]. Note also that f
defined by (2.8), (2.13), and (2.19) (or f defined by (2.20) or (2.21)) is not of
perfectly regular growth (p, a) if at least one a; 5= 0 [3, p. 53].

3. ProoF oF THEOREM 1

By the properties of proximate orders, L(r), and consequently {(r), are
slowly changing functions [5, 10]. Further, (2.3) shows that J(r) — o as
r — oo (cf. [4, pp. 296-297]). (It is not necessary to assume that L(r) is an
increasing function of r.) Hence the inverse function ¢~1(r) exists and is
increasing for r > ry, and is unbounded. Further, L(r) — oo by hypothesis
and so ¢(r) L((r)) — o with r.

Let n be an entire function with **(0) 2> 0 for all k and let

F(2) = ex(n(z)). 3.D
Let p € w, and be such that
1 1
Agn = o — —— |,
on = 5| 7y~ 5 |
Suppose if possible
—Hn
o, < €Xp (W) (3.2)

for all n > n, . Let ¢ = %, n > ny and choose r, such that

() =1 (ﬁm) . 3.3)

From (3.2) and (3.3) we have

[ [ = o czm) — o (ezyn)
> %exp ((—L?T;;lm) R n>ng. (3.4)

Let ry, = (1 4+ 8/2), where & = ¢?/2L(n). Then by an inequality from
Remes [9], we have for n > n,,

2nc )

1
[ p(ra) <53Xp <W . (3.5)
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Now f(rs) > 2| p(ry) if

2cn
7]("2) > ((L( ))1/2) (3.6)
Note that
7(re) > n(ry) + (re — 1) 7'(ry)
((L(Z)l)lfz) %8‘ AJH(ry) L (ry). 3.7

By (2.4) we have for r > r,,

(4/2) $1(r) < n(r) <2Bg7(r).

Hence

n(r) > b ((L(;I;)lfz) - 82(/;;23 nm) L (M3 e ).
Since L is a slowly changing function and
1) = b (pgmym) < 28971,
we have for n > n,, Y((log n)/3B) < r, ; and

> ) - SR L () ).

and by (2.3) the last term on the right tends to co with n. Hence for n > n, we
have (3.6); that is,

' ' —2cn
o<x<r2 {63 p(x) 2 lp(rz)l ((L( ))1/2)

This leads to a contradiction with our assumption (3.2), since ¢ = 4. The
theorem is proved.

Proof of Corollary 1.1. The proof is similar to that of Theorem 1. We
take f(z) = ex(n(2)), where 2 <k < K; n(r) = La(en/LEN®), ro=r
(1 + 8/2),8 = c?/2L(n). Forn > n,

cn ) Ar;

1) > heea (i) * 7.y %70 LGP0,
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Now for the last term ¢ (say) we have

- Lér; () L ( 7(ry) )

> iy e ) o ) £ (o )

since i, I_; , and L are all slowly changing functions. Hence for & > 2 (for
the case kK = 2, see Theorem 1),

A2 cn cn
=T - ([’“*2 (L(n))1/2) ‘L(’k 2(L(n))l/Z)
> £ Llsea) bl o)

L(n) $(n)
= Ay () L)

Since

2cn C )
Iy ((L(,:))ug) i (("m%lw) = (1 + o(1))(log 2)(fn - I,_on)™,

and $(n) — oo we have for all n > n,

2
N(ra) > lyy ((L(;)’;l/z)

and the rest of the proof is as in the theorem.

4. PROOF OF THEOREM 2

Since

T odt
P(r) = rotT(l—)

is a logarithmico-exponential function and increases to oo, there exists an
integer K such that {(x)/l,x tends to co with x [3, p. 21]. Further L(r) is also
a logarithmico-exponential function [3, pp. 18-19}. We may suppose K > 6.
Let k=K —3 and f(z) = e, 4(2). Since Lnln -+ [, (n)/L(rn) — o as
n— oo [3, pp. 33-34] the argument given in Theorem 1 completes the
proof.
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5. PROOF OF THEOREM 3

Let p € m, be a polynomial such that

N 1
o f(x) )

Suppose first that 1/A, , > f(d,,) (n > 1). Then since fis increasing on [0, o)
we have for 0 < x < d,

1) = p) < LG e (5.1)
Now write
Ef) = inf 1f — &0 -
Then

1 ,
EN) <1/ = plioar < U1y ——fdf . (52
By an inequality of Bernstein {1, p. 10]

E(f) = Aap )dn /4" (5.3)
From (5.2) and (5.3) we get, forn > 1,

ar’H ldn+l

A 22n+2{f(d )}2 N

5.4

If 1/Ag.n < f(d,) then since f(d,) = a,_ .d} ", (5.4) certainly holds. The proof
is complete.

Proof of Corollary 3.1. By the argument of Theorem 3, we have

Ao.zna = (@, N2 f(d,)}). (5.5)

Now, f(z) can be written as

zk

f(Z)*a0+Zasz—a0+aoz 4 d.
k=1 1 i

Let u(r, f) denote the maximum term and »(r, f) its rank. Then for r > r, [12]

M(r, f) < Aspulr, f) v(r, f)
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and we can choose 4, such that this inequality holds for all » > d, . This gives
f(d,) < agAind,)(d, - d,) (5.6)
and (2.12) follows from (2.9), (5.5), and (5.6), on writing 4 = 1/a, 4,
Proof of Corollary 3.2. We have for r > r, [6, p. 498]

M(r, f) < Agpur, f) v(r, )
and now the argument is similar to that in Corollary 3.1.

Proof of Corollary 3.3. By Theorem 3, we get for n > 1,
)‘0.27;—1 = aani"/24"{f(Dn)}2.

Here {D,}; is any strictly increasing sequence, D; > 0. Now we can write
k
f2) =ay+ Z ‘——I s

ke=my 1
where d;,, > d for k > N, . Choose n, (>>N,) so large that for n > n,,
d, > max d,.
1<k<n
Take D, =d,,n>=n,, and 0 <D, < D, < -~ D(ny) < --. Then, for
n>n
Ag.on1 = exp{log a,, + 2nlogd, — 4nlog 2 — 2log f(d,)}.

Now [8, p. 9] log M(r) ~log u(r) ~ r"'7, and v(r) ~ pr°L(r) (cf. [3, p. 38]).
Hence n = (1 + o(l))d,*L(d,). Further (p(r) — p)logr = log L(r), rp’(r)
log r = o(1). Hence

L(dzn) _ n
log 75 = (log 5
log i;" = % (log 2 + o(1)).

Consequently,

2n

dy,
Ao.2n-1 = €XP glog dd, - dyy

2n

2 log f(d,) — 4nlog 2§

— 2d °L(d,) — 4nlog 2 -+ o(n)

2n log 2

= exp 3-411 log2 — + of );

Since Ag gn—s == Ag.2n_1 , the corollary follows.
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6. PROOF OF THEOREM 4

(i) We compare the growth of

f@) = z a2

with the growth of

FO-a+ 3 () #=La®? a®>0 6D

k=0

By hypothesis on a;, we have for r > r,

M;’_F) < M(r, f) < 2M(r, F). (6.2)

Further F, and so f, are of perfectly regular growth with respect to a
proximate order p(r) defined as follows {14, pp. 209-211). Let x > n, and

w(x) = {log(xL(x))}/(p log(x/e) — p log p).
Then

liglo w(x) = 1/p, lLrg w'(x) x log x = 0.

Let p(r) = 1/w(y), where r = {yw(»)}*"¥). Then p(r) is a proximate order,
lim,. p(r) = p and

lim log M(r, F) _ lim log M(r.f) _ L

o pe(r) roow Pty
(i) We now prove (2.15). Choose

___a'n—l(F)
d, = a F) n>n,.

Then by convexity hypothesis
d, <d,..

Also for n > ny, d, = d,(n/(n — 1)), p = [n/2]. Hence [12] F(d,) < An
a,(F) d,”. Consequently we have by (5.5), forn > n,,

1
=1 (log ay, + 2nlogd,

— 4nlog2 — 2 log f(d))! . (6.3)

Nlsna? = exp
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Now

2nlogd, — 2 log f(d,) 2= 2nlogd, — 2 log a(F) — 2nlogd, -+ o(n),
a,
log —2— = o(n ——-]0 2.
&m0
Hence

lim inf AJ/S2D > exp {—2log 2 — %Iog 2;,

n-w

and (2.15) 1s easily proved.
(iii) To prove (2.14), we note that

1 1 < ZA n+1 alcx
0S50 70 = i

Now let n > n, . Using convexity hypothesis we have

k/o
Y ax<2 ¥ (kL(k)) X

k=n+1 k=n+l1
/ ] (n+1)/p
<2 (T ])) (I + Ty + T2+ )
2xnel ! (1)
:1~71((;141)L(n+1)) ’
where

poo XD L )y
7 ((n 4 2) L(n + 2) 0o y(n) .

Suppose now r is odd, # == 2N — 1. Then {s,(x)}®> = ax*x*" and so

1 I 2 1
o) F " aEINLON)YEN 1T, -

Choose x < y(n)(1 — 8,), where 8, = exp(—n/log n). Then

1 1
1— 5,
1
s f(x) < CXp 30(’7) T log(NL(N)) — = (log(2N) + log L(2N))
= exp g —2N log 2 + o(N); . (6.4)
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Now if x > y(n)}(1 — 3,), then

0<

1 1 1
Ssx) f) T awxV

= exp ;LZ— log(NL(N)) + O(1) — Nlog x2N — 1) — Nlog(l — 8,x_,)

— exp 3—“% (1 | log2) + o(N)g . (6.5)

Hence for all large N, the expression in (6.5) is less than (6.4). Consequently,

. Iz — _1
lim sup Ap3N-T < exp (7; log 2) :

AlSo Ay on < Ay sn_q . Hence from (6.4)

. 1
lim sup A5 << exp (7 log 2)

and the theorem is proved.

[
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